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The numerical solution of most fluid mechanics problems usually needs such a fine mesh
that the associated computational times become non-negligible parts in any design pro-
cess. In order to couple numerical modelling schemes with inversion or control algorithms,
the size of such models needs to be highly reduced. The identification method is a way to
build low-order models that fit with the original ones. The laminar flow over a backward-
facing step is used as a test case. Presented solutions are found to be in good agreement
with experimental and numerical results found in the literature.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Many industrial problems involve separating and reattaching flows in channels, usually combined with recirculation bub-
bles. Heat exchanger flows, for instance, often bear such kind of behaviors. But despite the complexity of the flow topology,
the entire behavior of most fluid flows is described by the so-called Navier–Stokes equations.

Since in most cases, these equations do not provide the known analytical solutions, many numerical methods have been
developed over the years to solve them. The space discretization can be based on, among others, the finite element formu-
lation, or, more usually, the finite volume method.

Among the types of flows which ensure separation and recirculation bubbles, the one around a backward-facing step can
be regarded as having a very simple geometry while retaining rich flow features like the ones mentioned above. The under-
standing of its structure may thus lead to a finer analysis of what may spring with more complex geometries. The backward-
facing step flow has often been used as a test case to assess the accuracy and efficiency of the codes developed from the
methods mentioned above. Indeed, its geometry does not prove to be challenging for meshing, and the experimental data
are available in plenty.

The literature offers many numerical and experimental studies on 2D steady incompressible flows over the backward-fac-
ing step. Its topology is known to depend on geometrical parameters, but is still determined mostly by the Reynolds number.
It is currently accepted that the flow features are stable and steady up to Re ¼ 800, when this number is calculated on the
upstream mean velocity and hydraulic diameter [1–4]. It can be noted that, still depending on the Reynolds number, the flow
may exhibit one or two recirculation regions of varying lengths.
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Any discretization method leads to the resolution of a matrix system of algebraic equations (AEs), instead of the integra-
tion of continuous partial differential equations (PDEs). For the solution of the matricial system to be close enough to the
solution of the partial differential equations, the time-space discretization must be fine enough. This constraint usually leads
to large matricial systems. Thus, depending on the mesh size and on the physics to be approximated, the computational price
to pay to obtain a suitable solution can be high in terms of memory and CPU time.

When the solution of the model is to be found several times for particular applications, e.g. for inverse or optimization
problems, then one has to re-assess the compromise made between accuracy and time consumption. One way to avoid
the loss of accuracy is to consider reduction modeling techniques. These methods aim to solve a restricted number n of or-
dinary differential equations (ODEs) instead of the N � n equations given by the ‘‘classical” discretization of the partial dif-
ferential equations.

When considering reduction techniques, one may cite the methods using a basis change [5] reduction in the physical
space of variables. For thermal linear problems, several methods coming from automatics have been successfully applied
[6]. Though many reduction methods for application on linear systems exist, a few of them are viable for applications on
nonlinear problems. On the one hand, the Proper Orthogonal Method coupled with the Galerkin projection (POD-G) has
proved to be very efficient on fluid-type nonlinear problems where turbulence plays a non-negligible role [7–9]. On the other
hand, the Modal Identification Method (MIM) has proved to be very efficient on diffusion-type nonlinear problems [10–12].
A comparison on a particular nonlinear diffusive problem between both the POD-Galerkin method and the Modal Identifi-
cation Method recently proved that both methods are accurate and robust and that both can be formulated equivalently
although the general ideas behind those two are completely different [13].

In this paper, a method derived from the Modal Identification Method is used to identify some reduced models related to
some fluid mechanics problems. The reduction process leans on the solution of an inverse problem of parameter estimation:
one defines the structure of the reduced model formulation before estimating the related vectors and matrices through the
solution of an optimization problem. Let us insist here on an important point: the identification method aims at reproducing
data that are supposed to be well described by the temporal equations of the detailed model, which is then a reference. Thus,
when deriving the detailed model directly out of the Navier–Stokes equations, we ensure that we can use fields coming from
any numerical codes, as long as those fields are a good approximation of a Navier–Stokes solution. It implies that the formu-
lation of the reduced model is independent of the numerical code which provides the data to be used. It does not even de-
pend on the class of numerical schemes used (e.g. finite differences and finite volume). The reduction method can even be
used based on the experimental data. Consequently, the actual purpose of this paper is to evaluate the ability of the reduced
model to reproduce and to predict the results obtained by a numerical code solving the Navier–Stokes equations. For reasons
of simplicity and also because it is a very well-known code among fluid mechanics engineers, we chose to use the finite-vol-
ume code Fluent 6.3.26 to provide us with the flow data.

The developed identification method leads to consider some low-order models that are related to some high-order mod-
els. In this sense, one can speak of model reduction. Also, since the approach leans upon an optimization algorithm, one can
also speak of compact modeling coupled with data fitting, sometimes referred as behavioural modeling. Actually, due to the
fact that the matrices of the reduced models are not computed in direct way but rather identified in the modal form, one uses
the terminology ‘‘modal identification method for model reduction”.

This paper is organized as follows: In Section 2, the formulation of the detailed model is derived. The governing Navier–
Stokes equations together with the boundary conditions are given. The variational problem is considered along with the spe-
cial treatment of the pressure variable and the boundary conditions. This section, based upon the classical literature, e.g.
[14,15] and also [16,17], eventually gives a formulation that is suitable for model reduction through the identification meth-
od. Note again that this formulation is not necessarily the one that is used to obtain the data before the estimation of the
reduced model. Next, Section 3 gives the main keys for model reduction through the identification method. We detail there
the reduced model formulation and its identification, which leans on the use of optimization algorithms. More precisely, one
uses a gradient-type method where the gradient of the cost function is computed through the adjoint problem. In Section 4,
we present some numerical results of model reduction for the backward-facing step problem. We find that the developed
identification method seems to be well suited for model reduction in this particular but representative case. Eventually, Sec-
tion 5 is dedicated to some conclusions and especially to future prospective works.
2. Formulation of the structure of the detailed model designed for model reduction

2.1. The governing equations

Let X be an open-bounded domain in Rd, ðd ¼ 2;3Þ, with a boundary oX and an outward pointing normal n. For T > 0, we
consider the problem of solving, for u : X� ð0; TÞ ! Rd and p : X� ð0; TÞ ! R, the time-dependent Navier–Stokes equations:
ou
ot þ u � rð Þu� mDuþ 1

qrp ¼ 0 in X� ð0; TÞ;
r � u ¼ 0 in X� ð0; TÞ;

(
ð1Þ
where u(x,t) is the flow velocity, pðx; tÞ is the pressure, m > 0 is the kinematic viscosity of the fluid, q > 0 is the fluid density
and x is the collection of ðxiÞ; i ¼ 1; . . . ; d.



Y. Rouizi et al. / Journal of Computational Physics 228 (2009) 2239–2255 2241
The characteristics of the flow depend on some nondimensional parameters, essentially on the Reynolds number
Re ¼ ~u‘=m, where ~u is a characteristic velocity, and ‘ is a characteristic length.

When considering time-dependent problems, an initial condition has also to be considered. This is of the type
uðx; 0Þ ¼ u0ðxÞ in X; ð2Þ
where u0 2 ½L2ðXÞ�d.

2.2. The boundary conditions

In the following application, several types of boundary conditions may be applied to model the fluid adherence on a fixed
boundary along with a fixed input flux, a free output flux, and a possibly symmetry boundary condition. We introduce the
following system defining the set of boundary conditions:
u ¼ �u on oX1; ð3aÞ
� mru � nþ pn ¼ 0 on oX2; ð3bÞ
u � n ¼ 0 on oX3; ð3cÞ
ðru � nÞ � si ¼ 0 i ¼ 1; . . . ;d� 1 on oX3; ð3dÞ
where foX1; oX2; oX3g forms a partition of oX, n and si are, respectively, the normal unit vector and the tangential unit vec-
tors to oX.

2.3. The variational formulation

For sufficiently regular functions u and p, the problem (1) becomes
Find uðx; tÞ; pðx; tÞ such that
d
dt ðu;vÞX þ aðu;vÞ þ bðu; u;vÞ þ cðv; pÞ ¼ 0 8v 2 V ;
c0ðu; qÞ ¼ 0 8q 2 Q ;

þessential boundary conditions

8><>: ð4Þ
where [14]

� V � ½W1;2ðXÞ�d, with the Sobolev space W1;pðXÞ defined as
W1;pðXÞ ¼ u 2 LpðXÞ ou
oxj
2 LpðXÞ for j ¼ 1; . . . ; d

���� ��
;

equipped with the norm
kukW1;pðXÞ ¼
Z

X

1
kp juj

p þ
Xd

j¼1

ou
oxj

���� ����p
 !

dx

 !1
p

;

where k is a characteristic length (often taken equal to 1). Note that vector-valued counterparts of scalar spaces are denoted
by bold-face symbols, e.g., H1ðXÞ ¼ ½H1ðXÞd�;
� Q � L2ðXÞ is the collection of square-integrable functions defined on X;
� ð�; �ÞX is the inner product of L2ðXÞ;
� a ¼ a0 þ a1;
� a0 : V � V ! R is the bilinear continuous and coercive form
a0 u;vð Þ ¼ m ru;rvð ÞX;
� a1 : V � V ! R is the bilinear form
a1ðu;vÞ ¼ �m ru � n;vð ÞoX;
� b : V � V � V ! R is the trilinear form given by
bðu; v ;wÞ ¼
Xd

i;j¼1

Z
X

ui
ov j

oxi
wj;

where ui, v i and wi are the canonical components of u, v and w, respectively;

� c ¼ 1

q ðc0 þ c1Þ;
� c0 : V � Q ! R is the continuous bilinear form given by
c0 v ; qð Þ ¼ � r � v ; qð ÞX;
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� and c1 : V � Q ! R is the continuous bilinear form given by
c1 v; qð Þ ¼ v � n; qð ÞoX:
When considering the boundary conditions (3d), we have [15]
V ¼ v 2 H1ðXÞdjv ¼ 0 on oX1v :n ¼ 0 on oX3

n o
;

Q ¼
L2

0ðXÞ ¼ q 2 L2ðXÞ
R

X qðxÞdx ¼ 0
��n o

if oX2 ¼£;

L2ðXÞ if oX2–£:

8<:

Let us point out that while both conditions (3b) and (3d) are the natural boundary conditions normally present in the var-
iational formulation, both essential boundary conditions (3a) and (3c) still need to be integrated to the form (4).

Note also that other kinds of variational formulation can be formulated. For instance, when considering the divergence-
free subspace of V : V0 ¼ fv 2 V : r � v ¼ 0g introduced by Hecht (see [15,18] for instance), the variational problem (4) sim-
plifies to ‘‘Find uðx; tÞ such that ðotu;vÞX þ aðu;vÞ þ bðu; u;vÞ ¼ 0 8v 2 V0þ essential boundary conditions”. We, however,
continue the derivation with the formulation (4).

2.4. Space semi-discretization

In this section, we introduce a finite element discretization of (4). For simplicity, we will state the results by assuming
Xh ¼ X, where Xh is the approximate domain on which the finite-dimensional function spaces are defined on. Denoting
Vh the space of continuous piecewise polynomial function (for instance, Vk

h if functions of degree k) and Q h ¼ Vh \ L2
0ðXÞ,

and denoting Wh ¼ ½Vh�d � Qh our space semi-discretized scheme reads: for all t 2 ð0; TÞ, find ðuhðtÞ; phðtÞÞ 2Wh such that
otuh;vhð ÞXh
þ a uh;vhð Þ þ b uh; uh;vhð Þ þ c vh;phð Þ ¼ 0;

c0 uh; qhð Þ ¼ 0

�

for all ðvh; qhÞ 2Wh and with u0h

a suitable approximation of u0 in ½Vh�d. The projection of this space semi-discretized for-
mulation onto the finite element bases uiðxÞ, i ¼ 1; . . . ; p and wiðxÞ, i ¼ 1; . . . ; q gives
ui;uj

� �
Xh

d~uj

dt þ a ui;uj

� �
~uj þ ~ukb uk; ui;uj

� �
~uj þ c ui;wj

� �
~pj ¼ 0 8i ¼ 1; . . . ;p;

~ut
i c0 ui;wj

� �
¼ 0 8j ¼ 1; . . . ; q;

8<:

where the summation Einstein convention is used with j ¼ 1; . . . ; p and k ¼ 1; . . . ; p for the first equation and i ¼ 1; . . . ; p for
the second equation. This projected formulation can be written in matrix form such that the problem consists now in finding
for all t 2 ð0; TÞ: ð~u; ~pÞ 2 Rdim ðVhÞþdim ðQhÞ such that
Mi;j
d~uj

dt þAi;j ~uj þ ~ukBk;i;j ~uj þ Ci;j~pj ¼ 0 8i ¼ 1; . . . ;p;

C0 j;i ~ui ¼ 0 8j ¼ 1; . . . ; q:

(
ð5Þ
2.5. The pressure treatment

The system (5) is written in terms of semi-discretized velocities ~u and pressure ~p. A large number of methods may be used to
solve the coupled system based on the time integration of (5). The coupled Uzawa and conjugate gradient algorithm for in-
stance [19,20], or the Chorin’s projection scheme [15] is proved to be very efficient for solving many Navier–Stokes problems.

The use of such projection algorithms leads to consider a coupled problem between velocities and pressure. Within the
area of model order reduction, structure preserving methods have been developed in the recent years that can cope with two
types of variables [21,22]. However, due to the identification method presented further, the coupling formulation is not the
most appropriate and especially easy-to-use formulation. We thus rather consider the method which consists in taking the
divergence of the first relationship of (1)
r � ou
ot
þ ðu � rÞu� mDuþ 1

q
rp

� �
¼ o

ot
r � uð Þ þ r � u � rð Þuð Þ � mD r � uð Þ þ 1

q
Dp ¼ r � u � rð Þuð Þ þ 1

q
Dp ¼ 0;
where one has used r � u ¼ 0 for simplifying the divergence of the nonlinear term. The pressure equation then writes
Dp ¼ �qr � ððu � rÞuÞ ¼ �q
Xd

i;j¼1

oui

oxj

ouj

oxi
; ð6Þ
which is easy to solve with adequate boundary conditions for the pressure p (see for instance [15,23] for different condi-
tions). Choosing p 2 Q with �p 2 f�p 2 L2ðXÞj�p ¼ 0 on oXg, the weak form of (6) reads
a0ðp; �pÞ þ mdðu; u; �pÞ ¼ 0;
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where
dðu; v; �pÞ ¼ q
Xd

i;j¼1

Z
X

oui

oxj

ov j

oxi
�p:
The projection of the space-discretized version of this equation onto the finite element basis wiðxÞ; i ¼ 1; . . . ; q and
uiðxÞ; i ¼ 1; . . . ; p gives:
a0ðwi;wjÞ~pj þ m~ukdðuk; uj;wiÞ~uj;
which corresponds in a matrix form to
Di;j~pj þ ~ukEk;i;j ~uj ¼ 0: ð7Þ
The introduction of (7) into (5a) gives eventually, using B  B � CD�1E
Mi;j
d~uj

dt
þAi;j ~uj þ ~ukBk;i;j ~uj ¼ 0 8i ¼ 1; . . . ; p:
Though the introduction of the pressure equation into the velocity equation through this way is likely to be inefficient for a
detailed modeling, this obtained formulation is regarded as being suitable for model reduction. The nonlinear equation given
above can be rewritten in a compact form as
d
dt
þ LþQ

� �
ð~uÞ ¼ 0; ð8Þ
where the linear operator is given by LðvÞ ¼ M�1Av and where the quadratic operator is given by QðvÞ ¼ M�1Bv 	 v .

2.6. Dirichlet boundary conditions

While natural boundary conditions are taken into account in (8), the essential boundary conditions still have to be inte-
grated into (8). The system to be dealt with contains actually (8) coupled with
Gð~uÞ ¼ h; ð9Þ
where GðvÞ ¼ v and h ¼ �u when considering nodes on oX1 and where GðvÞ ¼ v � n and h ¼ 0 when considering nodes on oX3.
A common method to solve the coupled problem (8) and (9) consists in solving the optimization problem
inf
~u2Vh

d
dt
þ LþQ

� �
ð~uÞ

				 				2

þ Gð~uÞ � hk k2

( )
with appropriate norms for each term. Another method more suitable for finding a formulation designed for model reduction
consists in applying exactly the essential boundary conditions. The time integration of (8) gives, when linearized
Aun ¼ B 8n 2 N
;
where the superscript n stands for the time tn ¼ n� dt. In this time-integrated equation, A ¼ ½Iþ dtðL þ QÞ� and B ¼ un�1 for
instance if an implicit time integration scheme is considered. The use of some other schemes would not change drastically
the derivation of the problem. Let us prescribe the condition u ¼ �u on the kth node (i.e. xðPkÞ 2 oX1). The system above is
then changed to
Aun ¼ B �Ak �u;
(where Ak stands for the vector representing the kth column of A) before the kth row of the matrix system (along with the
kth column of A) is removed, reducing the size of the system by a unit order. This procedure is repeated for all the nodes
where a Dirichlet condition is prescribed on. The system above thus becomes
~A~un ¼ ~B �
X

ijxðPiÞ2oX1

Ai �uðxiÞ; ð10Þ
where ~A is the matrix A without the ith lines and ith columns and ~B is the matrix B without the ith lines, i.e. corresponding
to xðPiÞ 2 oX1.

This method applied on, for instance, the implicit time integration scheme gives
~Iþ dtð~Lþ ~QÞ

 �

~unð Þ ¼ ~un�1 �
X

i

Ai �uðxiÞ;
which corresponds in a time-continuous form to
d
dt
þ ~L þ ~Q

� �
ð~uÞ ¼ Dð�uÞ: ð11Þ
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3. Model reduction

Let us rewrite (11) in a form that is more suitable for model reduction:
du
dt
¼ AuþWðuÞ þ B�uþ Bþ; ð12Þ
where Au ¼ �~LðuÞ, WðuÞ ¼ � ~QðuÞ, �u represents the prescribed boundary conditions used as input data for reduction and B is
thus the input matrix, and Bþ represents other input data, e.g. some Dirichlet boundary conditions or fluxes not taken into
account as expressed input (one has DðvÞ ¼ Bv þ Bþ).

Let us also introduce the output relationship which enables to select a part of the computed field:
Y ¼ Cu; ð13Þ
where one uses the partition Yui
¼ Cui

ui, i ¼ 1; . . . ; d. Relationships (12) and (13) make up the so-called detailed model ex-
pressed in a form suitable for reduction.

The idea behind model reduction is to find an equivalent model but with fewer degrees of freedom. In fluid mechanics
problems, the POD-Galerkin method has proved to be very efficient when considering turbulent flows [7–9,18]. On the other
hand, for transient problems such as diffusive problems, the modal identification method has proved to reproduce with accu-
racy the behavior of systems even taking into account of the complex boundary conditions [12]. In addition, some compar-
isons have been performed between both cited methods on a purely diffusive test case [13]. This study showed that both
methods are powerful in terms of accuracy and order reduction, but with a slight advantage for the modal identification
method. The goal is here to use an identification method just derived from the modal identification method. Note that while
the identification method has been successfully applied on the ðW�xÞ variables [24] for the lid-driven cavity and for 2D
pipe flows, the problem is here treated through the use of primal variables, i.e. velocities.

3.1. The reduced model formulation

Let K be the diagonal matrix of A involved in (12) and R the matrix of eigenvectors of A such that K ¼ R�1AR, and let per-
form the change of variable u ¼ RX, X 2 Rd�N where N is the number of degrees of freedom involved in (12). Then (12)
becomes
dX
dt
¼ KX þ R�1WðRXÞ þ G�uþ Gþ;
where G ¼ R�1B, Gþ ¼ R�1Bþ and the output equation is now expressed with Y ¼ CRX ¼ HX. The quadratic term R�1WðRXÞ
may be reformulated to XZðXÞ, where X 2 Rðd�N;dim ðZÞðd�NÞÞ and ZðXÞ is a vector containing the crossed products
XiXj with
i; j ¼ 1; . . . ; d� N;

i 6 j;

�

and dim ðZÞðmÞ ¼ mðmþ 1Þ=2. The model is thus written as
dX
dt ¼ KX þXZðXÞ þ G�uþ Gþ;

Y ¼ HX:

(

When considering time-independent problems, the problem above becomes
X þXZðXÞ þ G�uþ Gþ ¼ 0;
Y � HX ¼ 0;

(
ð14Þ
where we used X K�1X, G K�1G and Gþ  K�1Gþ.
The formulation (14) leads to solve a system of d� N equations, N being related to the space discretization. In the devel-

oped identification method, we use this formulation as the structure for the model that has to be identified. The reduction
procedure is thus relative to a new state x such that dimx� dimX. Hence, the reduced model structure is, with eY the
approximation of Y
xþxZðxÞ þ g�uþ gþ ¼ 0; ð15aÞeY � hx ¼ 0: ð15bÞ
The problem thus consists in finding the matrix x 2 Rðn;dim ðZÞðnÞÞ, the input matrix g 2 Rn�p, the additional vector gþ 2 Rn and
the output matrix h 2 Rq�n involved in the general reduced model formulation (15b). The size of the input matrix g depends
on both the reduced model order n and q, which is the number of nodes element of the boundary oX1 where a non-null
Dirichlet condition is prescribed. Note that the passage from (14) to (15b) leads to consider very low-order models of size
n� dim ðXÞ ¼ d� N. Note also that the number n is completely independent on the considered geometry and is even inde-
pendent on the 1D, 2D or 3D geometry characteristics.



Y. Rouizi et al. / Journal of Computational Physics 228 (2009) 2239–2255 2245
3.2. The reduced model identification

The evaluation of vectors and matrices involved in (15b) may be computed in the straightforward way from (12) and (13)
solving the eigenvalue problem and selecting the most dominant modes. The other way consists in identifying all the com-
ponents involved in (15b) through the solution of the optimization problem:
inf
b2B

jðbÞ; ð16Þ
where b is the collection of xi;j, gi;k, gþi and hl;i with i ¼ 1; . . . ;m (m being the reduced model order), j ¼ 1; . . . ;dim ðZÞðmÞ,
k ¼ 1; . . . ; p (p being the number of input) and l ¼ 1; . . . ; q (q being the number of location output), and B ¼ Rdim ðbÞ. The cost
function j to be minimized is based on a quadratic norm of errors between the output eY given by the reduced model and the
output Y
 given by a detailed model. This norm is integrated on all performed comparisons (k ¼ 1; . . . ;K), hence
jðbÞ ¼ J ðx;bÞ ¼
XK

k¼1

Hx� Y
;Hx� Y
ð Þ; ð17Þ
where ð�; �Þ is the inner product in Y.
The solution of the optimization problem is performed iteratively with an outer loop incrementing the reduced model

order and an inner loop solving effectively (16). Algorithm 1 presents schematically the procedure that is used for model
reduction through identification. In there, the satisfactory results evoked in steps (3f) and (4) are related to some criteria
defined and discussed in [11].

The optimization being non-purely quadratic, an iterative procedure is used to converge to the solution
�v ¼ arg minv2BjðvÞ. The quasi-Newton B.F.G.S algorithm is used [25]. At each iteration, the reduced model (15b) is integrated,
the cost function is computed, and the cost gradient is computed integrating an adjoint problem.
Algorithm 1. The reduced model identification algorithm
(1) Form the output Y
 through either the solution of K detailed models or from K experiments
(2) Let m ¼ 1 nn m ¼ dimx
(3) ‘ ¼ 0, initialize x ¼ x0

m, g ¼ g0
m

(a) Compute the reduce model to get x;
(b) Identify the matrix h through the minimization of the quadratic norm of hv� � where v is the collection of x

and � is the collection of Y
 for k ¼ 1; . . . ;K , i.e. through ht ¼ ðv � vtÞ�1v� t;
(c) Compute the cost function J from the solution of the ‘‘direct” reduced model (15b) with x‘

m and g‘m;
(d) Compute the adjoint model and the cost function gradient (26)
(e) Compute the new parameters from a gradient-type algorithm (as far as we are concerned we use the BFGS

quasi-Newton algorithm [25]);
(f) If satisfactory result: end, else ‘ ‘þ 1 and return to step 3a.
(4) If satisfactory result: end, else m mþ 1 and return to step 3.
The objective function gradient is obtained in the following way [26,27]. The directional derivative of J towards dw is
defined when the limit (18) exists:
bJ ðx;b; dwÞ ¼ lim
�!0

J ðx;bþ �dwÞ � J ðx;bÞ
�

; ð18Þ
where the tuning parameter � is the finite-difference interval. Even though the Finite Difference Method is easy to imple-
ment, it has the disadvantage of being highly CPU time consuming. Indeed, the method needs as many integrations of the
model given by (15b) as the number of parameters. Moreover, the value for � has to be chosen within a region where vari-
ables depend roughly linearly on �. Indeed for too small values, the round-off errors dominate while for too high values one
gets a nonlinear behavior. The objective function directional derivative is also obtained by differentiating (17):
bJ ðx;b; dwÞ ¼ oJ
ox

; x̂
� �

þ oJ
ob

; dw
� �

; ð19Þ
where x̂ is the directional derivative of x in the direction dw and where (�, �) stands for the inner products ð�; �ÞW and ð�; �ÞB
associated to the norm k � kY ¼ ð�; �Þ

1=2
Y . One then computes the directional derivative of the direct model (15b) in the direction

dw to access the ‘‘sensitivity” problem:

oR
ob
� dwþ Im þx~Z

� 
� x̂ ¼ 0; ð20Þ
where Im is the identity matrix of order m,R represents the residue of the model (15a), oR
ob is the jacobian ofRwith respect to

b and eZ is the jacobian of Z with respect to the reduced state x. Note that we have also by definition:
ðrjðbÞ; dwÞ ¼ oJ
ox

; x̂
� �

þ oJ
ob

; dw
� �

; ð21Þ
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and, taking into account of (17):
ðrjðbÞ; dwÞ ¼
XK

k¼1

Ht Hx� Y
ð Þ; x̂
� �

: ð22Þ
Using dw as the canonical directions of b, all the components of rjðbÞ can be computed from the solution of (20) and then
performing the scalar product (22). This method, called the direct differentiation method is, however, highly time consuming
since one direct linear sensitivity problem has to be solved to access each component of the gradient.

The objective function gradient is obtained by taking advantage of the linear dependence of ðrjðbÞ; dwÞ with respect to
dw. This is done by introducing the adjoint variable k 2 Rdim ðxÞ. Taking the inner product of (20) with k gives
oR
ob
� dw; k

� �
þ Im þxeZ� 

� x̂; k
� 

¼ 0; ð23Þ
and transposing we get
dw;
oR
ob

� �t

� k

 !
þ x̂; Im þ eZtxt

� 
� k

� 
¼ 0: ð24Þ
Eventually, using (21), if the adjoint is defined as the solution of the adjoint model:
Im þ eZtxt
� 

� k ¼
XK

k¼1

HtðHx� Y
Þ; ð25Þ
then we obtain the gradient:
rjðbÞ ¼ � oR
ob

� �t

� k;
that is also
rj ¼ ðZj; kiÞ i¼1;...;m
j¼1;...;dimðZÞðmÞ

;

 
ð�uk; kiÞ i¼1;...;m

k¼1;...;p;
ð1; kiÞi¼1;...;m

t
; ð26Þ
the different blocks being related to the components of the cost function gradient with respect to xi;j, gi;k and gþi ,
respectively.

Note that the components of the observation matrix h are not included in (26) because since there is a linear relationship
between the output eY and the state x via h, then the least squares method can be employed for the identification of h at lower
costs (see Algorithm 1 and especially [28] for more explanation).

In the general way [26,29], the gradient is computed by solving the adjoint problem (25) to calculate the adjoint variable
k, and then by applying the gradient relationship (26). Note that the adjoint variable k (also called the co-state variable) has
the meaning of a Lagrange multiplier when considering the Lagrange function L :W �B � Rdim ðxÞ#R defined by
Lðx; b; kÞ ¼ J ðx; bÞ þ k � ðxþxZðxÞ þ g�uþ gþÞ where the direct state Eq. (15a) is penalized [26,30].
4. Model reduction on the backward-facing step

4.1. The physical problem and the detailed modeling

A schematic diagram of the considered geometry is shown in Fig. 1. It consists of a backward-facing step in a duct where
the step height is h ¼ 1 cm. The coordinate system is defined as shown schematically in this figure, where the x1- and x2- coor-
dinate directions denote, respectively, the streamwise and transverse directions. The upstream height is also h ¼ 1 cm, hence
Fig. 1. The backward-facing-step scheme.
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the downstream height is 2h. The flow entering the channel is assumed to be fully developed and is described using u1-veloc-
ity parabola for laminar flow. Barton [4] stated that when using an inlet channel upstream of the step, significant differences
occur for low Reynolds numbers, however, they are localized in the sudden expansion region. In this study, to minimize its
possible effect on the numerical solution, it has been decided to use an inlet length of 4h. After the step, physically the flow
needs some streamwise distance to adjust and become fully developed. For that reason, the downstream region length has
been taken equal to 30h. The outflow boundary condition was applied at the exit channel x1 ¼ 30h; x2 ¼ ½0 : 2h�. The inlet
velocity profile is prescribed on oX1 (i.e. for x1 ¼ �4h; x2 ¼ ½h : 2h�) to
Fig. 2.
reattach
�u1ð�4h; x2Þ ¼ 4
3

Re m
h3 ðx2 � hÞð2h� x2Þ;

�u2ð�4h; x2Þ ¼ 0:

(
ð27Þ
On all other boundaries a null velocity is prescribed.
The chosen fluid assumed to be Newtonian and incompressible is air with dynamic viscosity l and density q, respectively,

equal to 1:81� 10�5 kg/(m s) and 1.205 kg/m3. The mean velocity U1 at the inlet is chosen such that the flow is driven at
given Reynolds numbers Re ¼ U1Dh

m (where m ¼ l
q and Dh ¼ 2h) that lead to stable flows. Many authors such as Gresho

et al. [31], Gartling [1] concluded that it is possible to obtain a steady solution for this flow until Re ¼ 800. Other authors
such as Barkley et al. [32] continued this stability analysis up to Re ¼ 1500 and stated that the flow remains stable. As far
as we are concerned, the range for the Reynolds number between 100 and 800 has been chosen such that the flow remains
stable for sure.

In order to apply the model reduction eight velocity fields have been computed (i.e. K ¼ 8 in (17)) from Re ¼ 100 to
Re ¼ 800 by step 100. For all Reynolds number being tested, downstream of the step, there was a main recirculation region,
whose length increased with the Reynolds number (Fig. 2). For a Reynolds number equal to 400, a second recirculation bub-
ble appears attached to the upper wall of the channel. Fig. 2 presents the evolution of non-dimensioned lengths X1=h, X2=h
and X3=h with respect to the Reynolds number from 100 up to 800. This figure also compares our results to those from [33–
35]. The results follow the trend as observed in the literature.

4.2. Adaptation of the general reduced model formulation for the backward-facing step problem

The prescribed input velocity �u1 being an explicit function of the location x2 and of the Reynolds number Re (see (27)), one
has u1ð�4h; x2Þ ¼ f ðx2ÞRe and u2ð�4h; x2Þ ¼ 0. Hence, the introduction of these relationships into (14) gives
X þXZðXÞ þ G0Reþ Gþ ¼ 0;
Y � HX ¼ 0;

(
ð28Þ
where the vector G0 involved in (28) is in Rd�N . In the case of the backward-facing step, there is no additional Dirichlet con-
dition, nor non-null fluxes to be considered added to the set of input. Hence, the vector Gþ involved in (28) is not considered
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in this special case. In the developed identification method, one uses this formulation as the structure for the reduced model
to be identified. Thus, the reduced model structure is
Table 1
Evolutio
respect

Order

1
2
3
4
5
6
7

Table 2
Mean a

u1

u2
xþxZðxÞ þ gRe ¼ 0;eY � hx ¼ 0;

(

where the input matrix g is, in this special case, a vector. The method described in Section 3.2 is applied on this new formu-
lation for the reduced model. Two test cases, each one involving a specific set of output, will be considered: the first one
includes almost the whole velocity field, the second one includes only a given velocity profile. In order to obtain the data
from the detailed model, and after mesh convergence tests, a total number of nodes equal to 144,247 were necessary to ob-
tain accurate and stable results.

4.3. Case one

In this first test case, all the nodes whose x1- coordinate is included between the x1=h ¼ �2 and the x1=h ¼ 30 range are
included in the reduction process. This gives a total number of 139,677 nodes in total. The maximum order for model reduc-
tion is seven so that the identification is performed in an over-determined way.

4.3.1. The reduced model identification
Table 1 gives the evolution of the cost function, the mean quadratic errors r and the maximum error e (defined, respec-

tively, in (29) and (30)) with respect to the reduced model order. The mean quadratic errors and maximal errors are defined
distinctly for velocity components u1 and u2 since the order of magnitude of both are very different. In order to compare
these error results with the order of magnitude of the velocities, we present in Table 2 the magnitude of the velocities data,
where the mean value represents the statistical mean of data. This table also presents the identification time needed to iden-
tify the reduced model for each order. The identification software was programmed with the Fortran 90 language and run on
a dual-core bi-processor AMD Opteron 2.2 GHz with 3 Go of RAM on a HP DL 145G2 data processing server
rui
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K � q
J

s �����
ui

; ð29Þ

ðeui
Þmax ¼ sup

j¼1;...;K
k¼1;...;q

hx� Y
j j

�������
ui

: ð30Þ
Fig. 3 presents the evolution of the cost function value J (defined by (17)) as a function of the increasing reduced model
order and, for each order, the decreasing cost function value with respect to the inner iterations (see Algorithm 1). This figure
shows that for a given order the cost function is still decreasing and that the cost function value is generally decreasing with
respect to the reduced model order at the end of the optimization iterations. The peaks appearing at the beginning of iter-
ations at a given order are due to the non-perfect initialization of the data.
n of the cost function value J , the mean quadratic errors rui
; i ¼ 1;2 the maximum errors eui

; i ¼ 1; 2 and the identification computation time with
to the reduced model order n.

J ru1 eu1 ru2 eu2 CPU (s)

4:96� 10þ2 2:92� 10�2 1:31� 10�1 1:62� 10�4 4:22� 10�2 4:60� 10þ0

7:22� 10þ1 1:09� 10�2 4:95� 10�2 9:92� 10�5 1:89� 10�2 6:42� 10þ1

1:33� 10þ1 4:63� 10�3 2:36� 10�2 6:44� 10�5 9:02� 10�3 1:51� 10þ2

2:18� 10þ0 1:84� 10�3 1:28� 10�2 4:06� 10�5 5:52� 10�3 2:19� 10þ2

4:09� 10�1 7:80� 10�4 3:71� 10�3 2:64� 10�5 2:41� 10�3 5:74� 10þ1

5:51� 10�2 2:79� 10�4 1:44� 10�3 1:58� 10�5 1:03� 10�3 4:14� 10þ2

4:80� 10�3 8:15� 10�5 4:91� 10�4 8:54� 10�6 3:39� 10�4 1:94� 10þ2

nd maximal velocities for both components u1 and u2.

Max Mean

8:76� 10�1 1:73� 10�1

1:04� 10�1 4:95� 10�3
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Fig. 3. Evolution of the cost function value J with respect to the optimization iterations for reduced model orders increasing until n ¼ 7. Test case one.
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4.3.2. Validation
The aim here is to validate the reduced model and to find out if the identified reduced model is able to reproduce with

accuracy the output Y of the original detailed model when other Reynolds numbers are prescribed. According to Table 1, it
can be seen that the best minimization is obtained for order 7, i.e. the cost function J and associated errors rui

and eui
are the

lowest and actually low when compared to the mean and maximal velocities presented in Table 2.
Table 3 presents the validation results, i.e. the low mean quadratic errors rui

and the low maximum absolute errors eui
for

both velocity components u1 and u2. Table 4 compares the length of the main recirculating region X1=h obtained through the
detailed model and through the reduced order model of order 7. Tables 5 and 6 give the detachment and reattachment loca-
tions of the first recirculation bubble on the upper wall X2=h and X3=h computed through both the detailed model and the
reduced order one. Tables 4–6 show that the identified reduced model of order 7 is able to predict with accuracy the forma-
tion of the bubbles, the length of the main recirculating region X1=h, and is also able to predict the apparition of the second
recirculation region on the upper wall for Re P 400 along with the locations of the detachment and reattachment points.

Figs. 4 and 5 compare, respectively, the u1 and u2 velocity fields computed through both the detailed model and the re-
duced model of order 7. These figures show a good agreement of the velocity fields given by the detailed model (top) and the
reduced model of order 7 (bottom).
Table 3
Evolution of errors rui

and eui
, i ¼ 1; 2 for the seven considered validation test, i.e. for Reynolds numbers from 150 to 750 by steps of 100.

Re ru1 ru2 eu1 eu2

150 3:98� 10�4 2:23� 10�4 2:27� 10�3 1:44� 10�3

250 2:06� 10�4 1:20� 10�4 1:05� 10�3 7:15� 10�4

350 1:25� 10�4 7:47� 10�5 5:34� 10�4 3:82� 10�4

450 5:81� 10�5 3:55� 10�5 2:82� 10�4 1:81� 10�4

550 5:77� 10�5 2:74� 10�5 2:56� 10�4 1:47� 10�4

650 1:35� 10�4 6:78� 10�5 5:00� 10�4 3:19� 10�4

750 2:57� 10�4 1:26� 10�4 1:00� 10�3 6:09� 10�4

Table 4
Length of the main recirculating region X1=h obtained with on one hand the detailed model and, on the the other hand, the identified reduced model of order 7.

Re ðX1=hÞDM ðX1=hÞRM Error %

150 3.962 4.038 1.917
250 5.872 5.841 0.514
350 7.507 7.450 0.748
450 8.843 8.770 0.819
550 9.885 9.809 0.767
650 10.71 10.67 0.438
750 11.44 11.39 0.459



Table 5
Detachment locations of the first recirculation bubble on the upper wall, X2=h.

Re ðX2=hÞDM ðX2=hÞRM Error %

450 7.769 8.215 5.733
550 8.190 8.503 3.821
650 8.663 8.982 3.682
750 9.145 9.423 3.035

Table 6
Reattachment locations of the first recirculation bubble on the upper wall, X3=h.

Re X3=hDM X3=hRM Error %

450 11.633 11.290 2.951
550 14.478 14.281 1.359
650 17.011 16.727 1.668
750 19.361 19.069 1.510

Fig. 4. Horizontal velocity field for both the detailed model (top) and the reduced model of order 7 (bottom).

Fig. 5. Vertical velocity field for both the detailed model (top) and the reduced model of order 7 (bottom).
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In Figs. 6 and 7, we plotted, respectively, the horizontal velocity u1 and the vertical velocity u2 profiles at x1=h ¼ 6,
x1=h ¼ 14 and x1=h ¼ 30 locations. It can be seen that the profiles computed with the reduced model of order 7 are in very
good agreement with those computed with the detailed model. Figs. 8 and 9 present, respectively, the stream function and
the vorticity fields computed through both the detailed model and the reduced one of order 7. It can be seen a very good
agreement between these results. Due to the spatial discretization of the velocity field that is obtained through the reduced
model, the results are better on the stream function than for the vorticity. This is due to the fact that the stream function is
obtained from an integration of the velocity field, whereas the vorticity is obtained through a space differentiation of the
velocity field. The vorticity field is thus highly sensitive to any error on the solution when the space discretization is fine.
On the contrary, the integration of the velocity field plays as a filter, and thus the stream function field is more continuous
than the vorticity field.

4.3.3. Comparison of reduction modeling with a linear interpolation
In this section, we compare the results provided by the reduced model with those obtained classically through a linear

interpolation. We again use the reduced model of order 7 identified and presented in the above sections. The principle of
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Fig. 7. Comparison of the detailed model with the reduced model of order 7: vertical velocity u2 for Re ¼ 550.
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linear interpolation is very simple. If we call uðx;ReÞ the velocity field for a Reynolds number Re included within the range
½Re�; Reþ�, then the procedure is simply
uðx;ReÞ ¼ uðx;Re�Þ þ uðx;ReþÞ � uðx;Re�Þ
Reþ � Re�

� Re� Re�ð Þ:
The linear interpolation method has been applied for seven Reynolds numbers from 150 to 750 by steps of 100, with seven
Re� from 100 to 700 by steps of 100 and seven Reþ from 200 to 800 by steps of 100.

The accuracy of the fields provided by the classical interpolation procedure are presented in terms of quadratic errors rui

and maximum absolute errors eui
in Table 7. The comparison of these results with those related to the identified reduced

model (see Table 3) shows that the reduced order model is much more able to predict the velocity field at a different Rey-
nolds number than the classical interpolation procedure.



Fig. 8. Stream function fields of the detailed model (top) and of the reduced model of order 7 (bottom) for Re ¼ 550.

Fig. 9. Vorticity fields of the detailed model (top) and of the reduced model of order 7 (bottom) for Re ¼ 550.

Table 7
Evolution of errors interpolation rui

and eui
, i ¼ 1; 2 for the seven considered validation test: Re from 150 to 750 by steps of 100.

Re ru1 ru2 eu1 eu2

150 1:547� 10�3 4:891� 10�4 7:321� 10�3 2:774� 10�3

250 1:573� 10�3 4:771� 10�4 7:328� 10�3 2:480� 10�3

350 1:618� 10�3 4:883� 10�4 7:279� 10�3 2:432� 10�3

450 1:641� 10�3 4:804� 10�4 6:880� 10�3 2:392� 10�3

550 1:673� 10�3 4:606� 10�4 6:790� 10�3 2:424� 10�3

650 1:758� 10�3 4:642� 10�4 7:377� 10�3 2:621� 10�3

750 1:846� 10�3 4:844� 10�4 8:033� 10�3 2:895� 10�3
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4.4. Case two

In this second test case, we used a specific set of outputs where we considered only 135 nodes located on the x1=h ¼ 9
line. Eight direct detailed model runs (from Re ¼ 100 to Re ¼ 800 by steps of 100) were again performed to form the output
vector Y
. The maximum order for model reduction is thus seven so that the identification is performed in an over-deter-
mined way.

4.4.1. The reduced model identification
Fig. 10 presents the evolution of the cost function value J (defined by (17)) as a function of the increasing reduced model

order and, for each order, the decreasing cost function value with respect to the inner iterations (see Algorithm 1). This figure
shows that for a given order the cost function is still decreasing and that the cost function value is generally decreasing with
respect to the reduced model order at the end of the optimization iterations. The peak appearing at the beginning of the opti-
mization iterations for the seventh order is due to the non-perfect initialization of the data.

Table 8 gives the evolution of the cost function J , the mean quadratic errors r and the maximum error e with respect to
the reduced model order. We observe a drastic decrease of the cost function and of the identification errors (r and e) with
respect to the reduced model order. Furthermore, the errors are very low when compared to the velocity magnitudes (see
Table 2 for comparison).

4.4.2. The reduced model validation
The aim here is to validate the reduced model and to find out if the identified reduced model is able to reproduce with

accuracy the output Y of the original detailed model when other Reynolds numbers are prescribed. We again chose to use the
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Fig. 10. Evolution of the cost function value J with respect to the optimization iterations for reduced model orders increasing until n ¼ 7. Test case two.

Table 8
Evolution of the cost function value J , the mean quadratic errors rui

; i ¼ 1;2 the maximum errors eui
; i ¼ 1;2 and the identification computation time with

respect to the reduced model order n.

Order J ru1 eu1 ru2 eu2 CPU (s)

1 1:50� 10þ0 5:17� 10�2 1:38� 10�1 6:92� 10�3 2:46� 10�2 1:10� 10�2

2 1:25� 10�1 1:34� 10�2 3:51� 10�2 3:52� 10�3 1:79� 10�2 3:96� 10�1

3 2:33� 10�3 1:58� 10�3 5:74� 10�3 1:21� 10�3 3:61� 10�3 3:25� 10�1

4 6:32� 10�4 8:77� 10�4 2:38� 10�3 9:01� 10�4 2:20� 10�3 2:66� 10�1

5 2:64� 10�4 6:61� 10�4 1:79� 10�3 7:82� 10�4 6:66� 10�4 2:90� 10�2

6 2:64� 10�4 6:61� 10�4 1:79� 10�3 7:82� 10�4 6:66� 10�4 6:70� 10�2

7 7:64� 10�6 5:19� 10�5 1:46� 10�4 2:19� 10�4 3:05� 10�4 2:91� 10�1

Table 9
Evolution of errors rui

and eui
; i ¼ 1; 2 for the seven considered validation test: Re from 150 to 750 by steps of 100.

Re ru1 ru2 eu1 eu2

150 2:16� 10�4 1:30� 10�4 4:21� 10�4 2:50� 10�4

250 1:92� 10�4 6:01� 10�5 3:62� 10�4 1:07� 10�4

350 2:06� 10�4 3:11� 10�5 3:59� 10�4 6:18� 10�5

450 2:57� 10�4 1:05� 10�4 4:25� 10�4 2:13� 10�4

550 3:30� 10�4 1:73� 10�4 5:69� 10�4 3:47� 10�4

650 5:97� 10�4 2:87� 10�4 9:99� 10�4 5:68� 10�4

750 3:46� 10�3 1:39� 10�3 5:58� 10�3 2:51� 10�3

Table 10
Mean and maximal velocities for the components u1 and u2.

Max Mean

u1 7:37� 10�1 1:71� 10�1

u2 7:79� 10�2 4:95� 10�3

Y. Rouizi et al. / Journal of Computational Physics 228 (2009) 2239–2255 2253
seven-order reduced model for validation. The chosen Reynolds numbers are taken from 150 to 750 by steps of 100. Table 9
reports the results of validation, i.e. the low mean quadratic errors rui

and the low maximum absolute errors eui
for both

velocity components u1 and u2. Table 9 clearly shows that the errors are low when compared to the order of magnitude
of the maximal and mean value of velocity components reported in Table 10. We also point out that the CPU time of sim-
ulation of the reduced model is less than 10�3 s.
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5. Conclusion

In this study, a model reduction was carried out on laminar steady incompressible fluid flows by using an identification
technique derived from the Modal Identification Method. A general formulation derived from the finite element method
could lead to consider a general formulation for fluid flows. The matrix structure has been established for the Navier–Stokes
problem in a general manner for the transient case. After writing these equations in the modal basis, and then in the station-
ary case, the matrix formulation with specific terms to treat the boundary condition has been formulated.

The identification procedure works as an inverse problem of parameter estimation. The outer loop increases the reduced
model order. For each reduced model order, the optimization algorithm consists in minimizing a cost function that integrates
the differences between the results given by the reduced model and the ones given by the original detailed model. The cost
function is minimized using a gradient-type method where the gradient is computed through the adjoint (co-state) equation.

The results presented in this paper show that the reduced model accuracy increases with the model order. The identified
reduced order model has been validated computing the reduced model with Reynolds numbers that were not used for the
reduction process. We found that the identified reduced order model was able to predict with accuracy the x1- and x2- veloc-
ities, the stream function field and, to a lesser extent, the vorticity field. The reduced model could also be validated compar-
ing the results for the length of the first recirculation bubble, and the locations of the detachment and reattachment of the
second recirculating bubble appearing attached to the top wall for Reynolds number around 400. All these results are in very
good agreement with those taken from the related literature.

We point out that two very distinct cases have been tested. The first is more classical since we considered almost the
whole velocity field as output data needed for model reduction. The second case is more original since we selected only
the velocities located on a single transverse line. This leads to consider a very efficient reduction tool when dealing only
on a part of the flow. Note that such an approach is not possible with other techniques such as the POD for instance. For both
test cases, a reduced order model could be identified and validated in a satisfying way with tests based on computations with
other Reynolds numbers than the ones used for the identification process.

Let us underline two features very interesting when using the reduced order model through the identification method. At
first, the velocity fields are computed very quickly with the reduced model. The CPU time needed to access the solution is of
the order of magnitude of the millisecond. Next, the reduced model is computed by solving a nonlinear stationary system
while most CFD packages use a non-stationary scheme for solving a stationary Navier–Stokes problem.

We point out that this reduction process is at present efficient on low Reynolds numbers with simple two dimensional
laminar flows where the velocity fields can be retrieved very accurately. The natural extension of the proposed work con-
cerns the application of the developed algorithms for fluid flows around cylinders with the Von–Karmàn structures. The
other field in which we are interested in concerns the coupling of such Navier–Stokes problems with heat exchange. Though
the gradient-type optimization algorithms were well suited for the presented model identification, the use of zero-order
optimization algorithm should be compulsory for more complicated cases where the cost function may present several un-
known local minima due to more complex physics and couplings. The preliminary tests would lead to consider the genetic
algorithms and especially the particle swarms algorithms for the non-convex optimizations. Next, we plan to use such re-
duced models for control, e.g. temperature control. This step will concern the numerical implementation of control algo-
rithms, leaning on the previously obtained reduced model, to realize a real thermal controlled system. The control goal
can be, for instance, to follow prescribed temperatures on several given locations or to minimize (or maximize) heat transfer
along some walls. In the framework of boundary control, the control parameters are the boundary conditions of the system,
i.e. the velocity for the fluid mechanics point of view and a heat flux or a prescribed temperature for the thermal point of
view.
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